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Figure 1. Schematic representation for stereochemical interpretation of 
the reaction. 

pro-i? hydrogen from the pro-S counterpart in NAD(P)H 
and its analog.25 The stereochemistry of the reactions with 
the enantiomers of 1 as well as the effect of the prochirality 
of the C4 hydrogens are currently under investigation in 
these laboratories. 
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Norbornyne1 

Sir: 

The reaction of organolithium reagents with cyclic vinyl 
halides has been much discussed as a route to strained cy-
cloalkynes.2'3 Thus, it was of interest that the reactions of 
methyllithium and phenyllithium with 2-chlorobicyclo-
[2.2.1]heptene (1) gave 2-methylbicyclo[2.2.1]heptene (2)4 

and 5-benzalbicyclo[2.1.1]hexane (3)5 in 73 and 62% 
yields, respectively. Even more surprising was the observa­
tion that optically active 1 gave optically active 2 with re­
tention of stereochemistry.6 These observations, in particu-

2 1 

H 
3 

lar those associated with the formation of 2, rule out the in-
termediacy of a symmetrical intermediate in the reaction of 
1 with certain organolithium reagents. The failure of 1 to 
react with methyllithium to form a cycloalkyne can be ra­
tionalized in terms of the large amount of strain which 
would occur if a triple bond were to be incorporated into the 
bicyclo[2.2.1]heptyl skeleton. This rationalization would 
appear to be justified by the difficulty observed in the gen­
eration of cyclopentyne from a variety of precursors.2 With 
this background in mind, we wish to report that the reaction 
of 1 with rt-butyllithium takes yet a different mechanistic 
pathway, which is best explained by the intermediacy of bi-
cyclo[2.2.1 jheptyne (norbornyne). 

Treatment of a solution of 1 with 4-5 equiv of n-butylli-
thium in tetrahydrofuran7 at 25° for 2 hr, followed by 
quenching with water, gave 80% of a 1:1.6 mixture of 3-n-
butyltricyclo[2.2.1.02-6]heptane (4) and 2-«-butylbicyclo-
[2.2.1]heptene (5). In order to elucidate the mechanistic 
pathway from 1 to 4 and 5, three sets of labeling experi­
ments were carried out. In the first of these studies, the 
reaction mixture was quenched with deuterium oxide in­
stead of with water. This gave an 88% yield of a 1:1.6 mix­
ture of 4 (no deuterium incorporation) and 5. Both mass 
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spectral and NMR measurements indicated that the 2-n-
butylbicyclo[2.2.1]heptene, which was formed, was 87% 
deuterated in the 3-position.8 This demonstrated the pres­
ence of the anion 6 prior to quenching. The less than quan­
titative incorporation of deuterium indicated that more 
than one mechanism might be involved in the formation of 

(CH,);CH 

In a second study involving isotopic labeling, 1 (81% deu­
terium9 at C-3) was treated with excess n-butyllithium in 
tetrahydrofuran. This produced 86% of a 16:1 mixture of 4 
(89% deuterium at C-3) and 5 (15% deuterium at C-3). 
Several aspects of this experiment merit discussion. First, a 
large change in product ratio was noted. This indicated that 
at least two different mechanisms were involved in the 
reaction of 1 with n-butyllithium. Furthermore, it provided 
strong evidence that the rate-determining step in the forma­
tion of the major portion of 5 involved removal of the deute­
rium at C-3 of 1. The retention of 15% of deuterium at C-3 
of 5 was consistent with the observations in the deuterium 
oxide quenching experiment. Again, strong support for the 
formation of 5 by two competing mechanisms was obtained. 

The last experiment involved the use of optically active 
(+)-(lS)-2-chlorobicyclo[2.2.1]heptene (1), [a]25D +0.91 
± 0.10° (c 3.7, CHCl3), which was prepared from (+) -
(lS)-bicyclo[2.2.1]heptan-2-one, [a]2SD +5.0 ± 0.1° (c 
21.0, CHCl3) according to the method of McDonald and 
Steppel.10 Treatment of (+ ) - l with n-butyllithium under 
the conditions described above gave a 1:1.6 mixture of (—)-
(2fl)-3-«-butyltricyclo[2.2.1.02 '6]heptane (4), [a]25D -8 .1 
± 0.1° (c 3.1, C H C l 3 ) " and (+)-(15')-2-n-butylbicyc-
lo[2.2.1]heptene (5) [a]25D +2.06 ± 0.10° (c 3.3, CHCl3). 
In order to determine the absolute configuration of 5 and 
the extent of retention (or inversion) of configuration, a 
sample of optically active 8, identical in rotation with that 
used in the preparation of (+ ) - l , was treated with butyli-
denetriphenylphosphine. This gave (+)-(lS)-2-butylidene-
bicyclo[2.2.1 ]heptane (9), [a]25D +21.6 ± 1° (c 10.6, 

(CHo)3CH3 
H 

(CHo)3CH1 

CHCH-CHCH 

CHCl3) . Catalytic reduction of 9 gave (-)-(\S)-endo-2-n-
butylbicyclo[2.2.1]heptane (7), [a]25D -0 .89 ± 0.10° (c 
4.0, CHCl3) . Similar catalytic reduction of the sample of 
(+)-5 obtained from (+) - l gave ( - ) -7 , [a]25D - 0 .23 ± 
0.10° (c 2.5, CHCl3) . This indicated that most of 5 was 
formed via a mechanism which resulted in racemization. 
Within experimental error, the retention of optical activity 
in 5 was equivalent to the percentage of retention of deute­
rium in the reaction of deuterated 1 with n-butyllithium 
and to the percentage of C-3 protium retention in the deute­
rium oxide quenching experiment. 

The three labeling experiments described above are all 
consistent with the intermediacy of a symmetrical species in 
the formation of ca. 85% of 5.12 The large deuterium iso­
tope effect on the product ratio implies that the first step in 
the formation of this symmetrical intermediate was the re­
moval of the vinylic proton to produce 10. The only obvious 
route from 10 to a symmetrical intermediate is via loss of 
chloride to give 11. We feel that the accumulated data pro­
vide overwhelming evidence that norbornyne (11) is present 
as a major intermediate in the reaction of 1 with n-butylli­
thium. Norbornyne would be expected to be a highly reac­
tive intermediate. Addition of n-butyllithium to 11 under 
the reaction conditions should give 6, which on quenching 
would produce 5. 

10 

(CH );CH (CHo)3CH3 

The inversion of stereochemistry in the formation of 4 " 
was consistent with the addition of the n-butyllithium to 1 
followed by a-elimination to give 12. Insertion of the carbe-
noid intermediate across the ring would then produce 4. 
This mechanism is also consistent with the total retention of 
deuterium from labeled 1 and the failure of 4 to incorporate 
deuterium in the deuterium oxide quenching experiment. 

LiCl 
(CH3J3CH3 

12 

In summary, we have shown that 2-chlorobicyclo-
[2.2.1]heptene can react with a strong base such as n-butyl­
lithium to the extent of 52% to produce norbornyne. We be­
lieve that this is probably the most strained acetylene pre­
pared thus far.13 Our studies in this area are being contin­
ued. 
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Nuclear Spin-Spin Coupling via Nonbonded 
Interactions. III. Effects of Molecular Structure 
on Through-Space Fluorine-Fluorine and 
Hydrogen-Fluorine Coupling1 

Chart I. Through-space FF and HF coupling constants for 
compounds 1—9. 

Sir: 

The concept2 that certain intramolecularly crowded 
atoms can experience nuclear spin-spin coupling predomi­
nantly via through-space (or direct) nonbonded interactions 
of the two atoms, as opposed to interactions involving the 
intervening bonds, continues to receive considerable atten­
tion. Many examples have been reported for both F F 3 4 and 
HF 2 a ' 5 coupling, and several theoretical treatments have 
appeared. l a 6 Some initial findings of the systematic investi­
gations we are undertaking of through-space coupling in po-
lynuclear aromatic systems are presented in Chart I.7-8 

The values of J F F observed for 1-69 support the idea that 
the magnitude of through-space FF coupling depends on the 
internuclear distance. For example, the FF distance in the 
difluorophenanthrene 2 obviously is shorter than that in the 
difluoronaphthalene 1, which accounts for J F F being much 
larger for 2 than for 1. In the series of difluoro compounds 
2-5 , the sharply decreasing values of J F F (2, 174 Hz;10 3, 

CH, CH1 

L Jn = 65.5 Hz 2 Jn = 174 Hz 3, Jn- = 43.2 Hz 

papj 
SCH;,

 v v ' XCH( ^ ^ " ^ "CH, 

4, Jn- = 5.3 Hz 5, J1,K ~ 0 Hz 6, Jn = 174 Hz 

7, =/„:,>' = 2.6 Hz 8, JH.,:;K = 14.5 Hz 9, JH I,,F = 1.7 Hz 

43.2 Hz ; " 4, 5.3 Hz;12 5, ca. 0 Hz) are consistent with the 
expectation that out-of-plane distortions in these helical 
molecules give rise to increasing FF distances in the se­
quence 2 < 3 < 4 < 5. The observation of the same J F F 
value of 174 Hz for both the benzo[g/zj]perylene derivative 
612 and the phenanthrene derivative 2 reflects the similar 
spatial relationship of the two fluorines in these compounds. 

Coupling between bay hydrogen and fluorine nuclei in 4-
fluorophenanthrenes has apparently not been reported pre­
viously. In addition to the value of 2.6 Hz13 for the coupling 
between H-5 and F-4 in 4-fluorophenanthrene (7) itself, we 
find the following values of J54 for seven different substitut­
ed derivatives of 7:14 8-methyl, 2.9 Hz; 8-chloro, 3.8 Hz; 6-
fluoro, 3.8 Hz; 6-chloro, 4.4 Hz; 6-bromo, 4.4 Hz; 6-me-
thoxy, 4.6 Hz; and 7-fluoro-l-methyl, 4.6 Hz. To our 
knowledge, the value of 14.5 Hz12 for the coupling between 
H-12 and F-I in l-fluorobenzo[c]phenanthrene (8) exceeds 
in magnitude all previously reported values for through-
space HF coupling via nonbonded interactions.15 We also 
find the following values of /12,1 for four different substitut­
ed derivatives of 8:7 9-methoxy, 14.6 Hz; 9-bromo, 14.7 Hz; 
9-cyano, 15.3 Hz; and 10-fluoro-8-methyl, 14.3 Hz. A value 
of 1.7 Hz is found for the coupling constant for H-I l and 
F-IO in 10-fluorodibenzo[c,g]phenanthrene (9) and also in 
its 13-fluoro-l-methyl derivative. 

The patterns of our FF and HF coupling results show one 
striking and instructive feature as illustrated graphically in 
Figure 1: the magnitudes of the HF coupling constants in 
7-9 run qualitatively parallel to those of the FF coupling 
constants in 1-3, respectively, and there is no such parallel­
ism for what might have been regarded as the structurally 
more comparable systems 7-9 and 2-4, respectively. For 
example, the largest value of J F F in the series 1-4 is found 
in the phenanthrene system 2, whereas the largest value of 
JHF in the series 7-9 is found not in the corresponding 
phenanthrene system 7 but rather in the benzo[c]phenan-
threne system 8. We believe this provides evidence for the 
concept that the nonbonded interactions of importance for 
through-space HF coupling are not those between F and H 
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